Allosteric regulation by cooperative conformational changes of actin filaments drives mutually exclusive binding with cofilin and myosin

نویسندگان

  • Kien Xuan Ngo
  • Nobuhisa Umeki
  • Saku T. Kijima
  • Noriyuki Kodera
  • Hiroaki Ueno
  • Nozomi Furutani-Umezu
  • Jun Nakajima
  • Taro Q. P. Noguchi
  • Akira Nagasaki
  • Kiyotaka Tokuraku
  • Taro Q. P. Uyeda
چکیده

Heavy meromyosin (HMM) of myosin II and cofilin each binds to actin filaments cooperatively and forms clusters along the filaments, but it is unknown whether the two cooperative bindings are correlated and what physiological roles they have. Fluorescence microscopy demonstrated that HMM-GFP and cofilin-mCherry each bound cooperatively to different parts of actin filaments when they were added simultaneously in 0.2 μM ATP, indicating that the two cooperative bindings are mutually exclusive. In 0.1 mM ATP, the motor domain of myosin (S1) strongly inhibited the formation of cofilin clusters along actin filaments. Under this condition, most actin protomers were unoccupied by S1 at any given moment, suggesting that transiently bound S1 alters the structure of actin filaments cooperatively and/or persistently to inhibit cofilin binding. Consistently, cosedimentation experiments using copolymers of actin and actin-S1 fusion protein demonstrated that the fusion protein affects the neighboring actin protomers, reducing their affinity for cofilin. In reciprocal experiments, cofilin-actin fusion protein reduced the affinity of neighboring actin protomers for S1. Thus, allosteric regulation by cooperative conformational changes of actin filaments contributes to mutually exclusive cooperative binding of myosin II and cofilin to actin filaments, and presumably to the differential localization of both proteins in cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myosin and Tropomyosin Stabilize the Conformation of Formin-nucleated Actin Filaments*

The conformational elasticity of the actin cytoskeleton is essential for its versatile biological functions. Increasing evidence supports that the interplay between the structural and functional properties of actin filaments is finely regulated by actin-binding proteins; however, the underlying mechanisms and biological consequences are not completely understood. Previous studies showed that th...

متن کامل

Cofilin-induced cooperative conformational changes of actin subunits revealed using cofilin-actin fusion protein

To investigate cooperative conformational changes of actin filaments induced by cofilin binding, we engineered a fusion protein made of Dictyostelium cofilin and actin. The filaments of the fusion protein were functionally similar to actin filaments bound with cofilin in that they did not bind rhodamine-phalloidin, had quenched fluorescence of pyrene attached to Cys374 and showed enhanced susce...

متن کامل

Perturbations of functional interactions with myosin induce long-range allosteric and cooperative structural changes in actin.

The role of the rotational dynamics of actin filaments in their interaction with myosin was studied by comparing the effect of myosin subfragment 1 (S1) with two other structural perturbations, which have substantial inhibitory effects on activation of myosin ATPase and in vitro motility of F-actin: (1) binding of the antibody fragment Fab(1-7) against the first seven N-terminal residues and (2...

متن کامل

Drebrin inhibits cofilin-induced severing of F-actin.

Molecular cross-talk between neuronal drebrin A and cofilin is believed to be a part of the activity-dependent cytoskeleton-modulating pathway in dendritic spines. Impairments in this pathway are implicated also in synaptic dysfunction in Alzheimer's disease, Down syndrome, epilepsy, and normal aging. However, up to now the molecular interplay between cofilin and drebrin has not been elucidated...

متن کامل

Cofilin-induced unidirectional cooperative conformational changes in actin filaments revealed by high-speed atomic force microscopy

High-speed atomic force microscopy was employed to observe structural changes in actin filaments induced by cofilin binding. Consistent with previous electron and fluorescence microscopic studies, cofilin formed clusters along actin filaments, where the filaments were 2-nm thicker and the helical pitch was ~25% shorter, compared to control filaments. Interestingly, the shortened helical pitch w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016